Semi-Supervised Learning for Surface EMG-based Gesture Recognition

نویسندگان

  • Yu Du
  • Yongkang Wong
  • Wenguang Jin
  • Wentao Wei
  • Yu Hu
  • Mohan S. Kankanhalli
  • Weidong Geng
چکیده

Conventionally, gesture recognition based on nonintrusive muscle-computer interfaces required a strongly-supervised learning algorithm and a large amount of labeled training signals of surface electromyography (sEMG). In this work, we show that temporal relationship of sEMG signals and data glove provides implicit supervisory signal for learning the gesture recognition model. To demonstrate this, we present a semi-supervised learning framework with a novel Siamese architecture for sEMG-based gesture recognition. Specifically, we employ auxiliary tasks to learn visual representation; predicting the temporal order of two consecutive sEMG frames; and, optionally, predicting the statistics of 3D hand pose with a sEMG frame. Experiments on the NinaPro, CapgMyo and cslhdemg datasets validate the efficacy of our proposed approach, especially when the labeled samples are very scarce.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Self-Supervised Learning for Object Recognition based on Kernel Discriminant-EM Algorithm

In Proc. of IEEE Int’l Conf. on Computer Vision, Vancouver, Canada, 2001 It is often tedious and expensive to label large training data sets for learning-based object recognition systems. This problem could be alleviated by selfsupervised learning techniques, which take a hybrid of labeled and unlabeled training data to learn classifiers. Discriminant-EM (D-EM) proposed a framework for such tas...

متن کامل

Multi-velocity neural networks for gesture recognition in videos

We present a new action recognition deep neural network which adaptively learns the best action velocities in addition to the classification. While deep neural networks have reached maturity for image understanding tasks, we are still exploring network topologies and features to handle the richer environment of video clips. Here, we tackle the problem of multiple velocities in action recognitio...

متن کامل

Deep Dynamic Neural Networks for Gesture Segmentation and Recognition

The purpose of this paper is to describe a novel method called Deep Dynamic Neural Networks(DDNN) for the Track 3 of the Chalearn Looking at People 2014 challenge [1]. A generalised semi-supervised hierarchical dynamic framework is proposed for simultaneous gesture segmentation and recognition taking both skeleton and depth images as input modules. First, Deep Belief Networks(DBN) and 3D Convol...

متن کامل

Surface EMG-Based Inter-Session Gesture Recognition Enhanced by Deep Domain Adaptation

High-density surface electromyography (HD-sEMG) is to record muscles' electrical activity from a restricted area of the skin by using two dimensional arrays of closely spaced electrodes. This technique allows the analysis and modelling of sEMG signals in both the temporal and spatial domains, leading to new possibilities for studying next-generation muscle-computer interfaces (MCIs). sEMG-based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017